

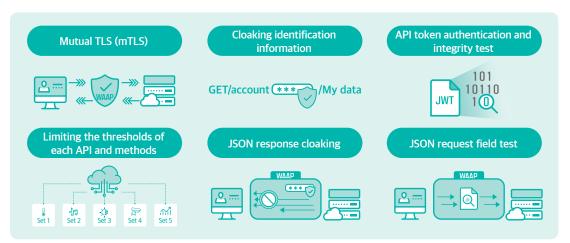
Web Application and API Protection

WEBFRONT-K

POILINK WEBFRONT-K has evolved into a web application and API protection (WAAP) from the legacy web application firewall.

As the use of APIs in application development has common way, attacks targeting API vulnerabilities are increasing. In addition, WAAP is essential because existing WAF alone cannot effectively protect sensitive information through your web applications and APIs.

WEBFRONT-K is a WAAP that responds to new web attacks by applying intelligent detection technology including user behavior-based detection, boasting the best performance on the in-house developed platform.

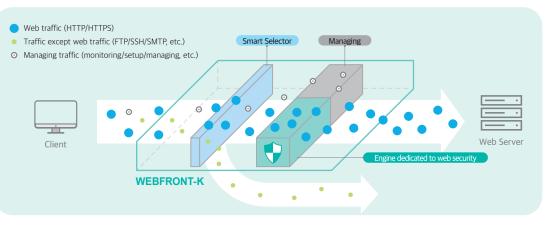


Applied core technology for API security

WAAP is an evolved web application firewall that performs WAF, DDoS protection, bot management, and API security.

API security is based on the security of web applications. Therefore, a certain level of API security is possible with functions like a response to attacks (e.g. Buffer overflow, Injection and XSS) on web applications, prevention of sensitive information leakage, a permission list, a block list, access log control and blocking credential stuffing.

However, in order to respond to OWASP vulnerabilities, which is the most important in application security, the following technologies must be equipped in WEBFRONT-K.


Differentiated design for highperformance

We design and develop hardware and software for optimized web security.

Selective Traffic

Core load balancing

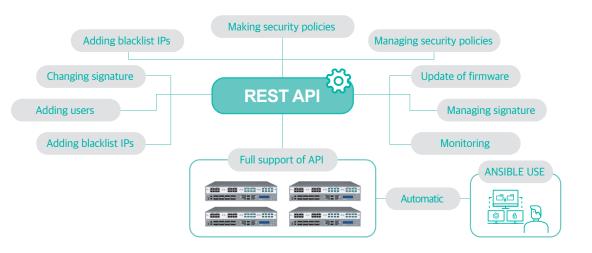
- $\ensuremath{\boxdot}$ Applying Smart Selector $\ensuremath{^{\rm M}}$, proprietary technology, to an equipment port
- ☑ Delivering web traffic (HTTP & HTTPS) selectively on 'dedicated web security engine'
- ✓ Performing a load balancing to avoid bottleneck of a certain CPU core when web traffic is detected
- ☑ Providing high-performance web security by effective CPU usage (patent registered)

Various detection technologies

Applying CAPTCHA and JavaScript action-based authentication to control improper bot activities

User behavior-based detection	User behavior-based detection to distinguish normal users from an increasing number of bots
Application learning detection	By learning user responses, it detects, develops, and updates profile.
Logic analysis detection	Smart detection by finding the features of variant/new attack without signature
Signature detection	\mathbb{Q} Rapid detection by identifying known attack patterns

SSL decryption mirroring


WEBFRONT-K delivers decrypted traffic to threat analysis equipment and blocks it if it's identified as abnormal traffic

- Internet Content Adaptation Protocol (ICAP)
- ✓ SSL/TLS Decryption Mirroring
- ☑ API integration
- $\ensuremath{\boxdot}$ No need of separate SSL decryption equipment
- ✓ Latest TLS 1.3 and HTTP/2

Supports Full REST API

Multiple WAF/WAAP can be easily managed and integrated. It provides various management function through REST API and supports ANSIBLE.

Security analysis and statistics management

WEBFRONT Analyzer is an analysis solution which monitors multiple WEBFRONT-K from a remote site. Analyzer monitors the state of equipment by analyzing log data received from WEBFRONT-K. It informs attack events to users and makes various statistics reports.

	webfront-k AnalyzerV2 🚳 प्रसंदर्भ	्र म्यूटर के स्वतंत्र 👘	G #1 83	224	miju 2 - Osess 0 0
	▲ WEBERONT-K 전황 · R-S 전비 : 210 · 드리던 : 537 · 세비우 : 165	+ Visio Application: 425	사용자관리 집군전리 의	Chart 😫 : 🐳 🕅	9485 O 🗁 🖹 🖞 🕇
	Image: Split Table O ▲ × TTEND 22 04	115.9343175	인근전체 (* * * * * * * * * * * * * * * * * * *	#4 41 Science Top5 051 Science Top5 05	0 0 × 220 221 221 221
			0 0 ×	Assigner A1078 95M \$51402 - 14078 95M \$51402 - 141 \$5	0 0 × 0 0 ×
	CPU NHH (R) 0 0 ×	김 서비스 보니너워	0 0 ×	김 서비스 보니러용	0 ¢ ×
		IP MAC VLAN #M	NetBIO5	Server State	
eran and ends cards a function and				192.168.202.27	
14 MAX MAY MED 11 MAVA MAY		192.168.202.27 00:2510:c7:21:2e 1 192.168.202.27 00:25:50:c7:21:2e 1	ge7 0e7	192 168 202 27	
Laura directada de la didición de la	* 10 70 30 40 40 40 30 30 40 30 40 30 30	192.168.202.27 00225301072126 1	ge- ce7	192.168.202.27	
1 KURER Specification (SR 1 000521)(UR 1 SP 1 0005		192.166.202.27 00.23.50.c7.21.2e 1	ger	192.168.202.2/	

Managed Security Service and security consulting

(Optional, Domestic only) PIOLINK Security Service offers systematic, professional services about vulnerability analysis, hacking simulation, new policies, equipment operation, etc. which are needed for the build-up of WAF/WAAP.

Cloud web application WAF

WEBFRONT-KS

WEBFRONT-KS is the cloud delivered web application and API protection(WAAP), expanding WAF capabilities to four core features: WAF, DDoS protection, bot management and API protection.

It has user behavior-based security detection technologies (same technology used in WEBFRONT-K, dedicated hardware) as well as the function of CAPTCHA and JavaScript action-based authentication to control improper bot activities.

Confirming scouting/false detection

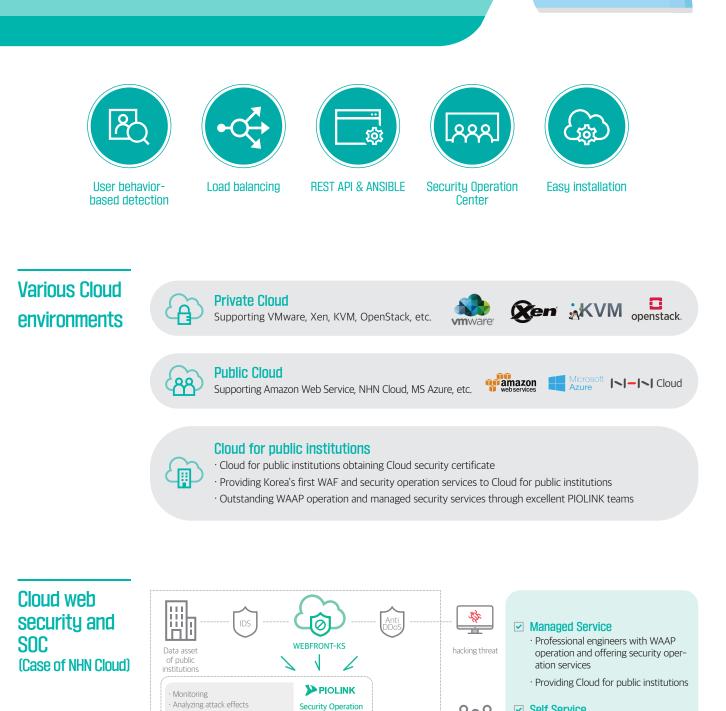
Vulnerabilities and incident dis-

Management of task-performing

semination

Center(SOC)

Cloud


Checking tasks

custome

performed

Inquires

Self Service

Building and operating WAAP by users

Specification

WEBFRONT-K (Appliance WAAP)

WEBFRONT	K18	300	K3	200	K32	.00R	K4	600	
	1		- 0000 0000 - NO 000000 00000		- 5000 5000 - N 0 100000 11000		- 2000 2000 10 200000 22 200		
Ethernet Ports (Total)	2	2	2	2	2	2	2	2	
·40 GbE Fiber (QSFP+)		-		_		-		-	
·10 GbE Fiber (SFP+)	2	2	:	2		2		2	
•1 GbE Fiber (SFP)	8	3	8	8		8		8	
•1 GbE Copper	1	2	1	.2	12		12		
Bypass Ports • Type1 : 2 pairs Fiber • Type2 : 2 pairs Copper	Choose ty	ype 1 or 2	Module type (up to 4)		Module type (up to 4)		Module type (up to 4)		
Memory (RAM)	8 GB	16 GB	16 GB	32 GB	16 GB	32 GB	32 GB	64 GB	
Storage Log (SSD)	480 GB	1 TB	1 TB	2 TB	1 TB	2 TB	1 TB	2 TB	
Storage OS (SSD)	240	GB	240	240 GB		240 GB		240 GB	
CPU	1 x 2	core	1 x 4-core		1 x 6-core		1 x 12-core		
Power Consumption	88	W	98 W		117 W		115 W		
Power Input	100-240VAC, 50-60 Hz (universal voltage) / Dual Power (hot-swappable)								
Dimension (WxDxH)	428 x 458	x 44 mm	428 x 458 x 88 mm		428 x 458 x 88 mm		428 x 458 x 88 mm		
Weight	8.1	kg	9.3 kg		9.3 kg		9.3 kg		
Throughput License	1 Gbps,	s, 2 Gbps 5 Gbps, 7 Gbps		5 Gbps, 7 Gbps		10 Gbps, 13 Gbps			
Concurrent Session	4,000),000	8,000,000		8,000,000		16,000,000		
CPS / TPS	50,000 /	0 / 100,000 140,000 / 210,000		140,000 / 210,000		270,000 / 450,000			

WEBFRONT	K5600		K5800	K8600	
Ethernet Ports (Total)	16 or 1	8 or 24	16 or 18 or 24	2	0
·40 GbE Fiber (QSFP+)	2 (opt	ional)	2 (optional)		1
·10 GbE Fiber (SFP+)	16, 8 (o	ptional)	16, 8 (optional)	1	6
·1 GbE Fiber (SFP)		-	-		-
•1 GbE Copper	8 (opt	ional)	8 (optional)	-	
Bypass Ports • Type1 : 2 pairs Fiber • Type2 : 2 pairs Copper	Module type (up to 4)		Module type (up to 4)	Fixed type 1, Optional type 1 only	
Memory (RAM)	32 GB	64 GB	64 GB	128 GB	
Storage Log (SSD)	1 TB	2 TB	2 TB	2 TB	4 TB
Storage OS (SSD)	240	GB	240 GB	1 TB	2 TB
CPU	1 x 12	2-core	1 x 16-core	1 x 16-core	
Power Consumption	140	6 W	144 W	416.1 W	
Power Input	100-240VAC, 50-60 Hz (universal voltage) / Dual Power (hot-swappable)				
Dimension (WxDxH)	428 x 508 x 88 mm		428 x 508 x 88 mm	428 x 731 x 88 mm	
Weight	10.1 kg		10.1 kg	17.5 kg	
Throughput License	16 Gbps, 20 Gbps		25 Gbps, 40 Gbps	40 Gbps	
Concurrent Session	16,00	0,000	20,000,000	20,000,000	
CPS / TPS	400,000	/ 900,000	400,000 / 1,000,000	400,000 / 1,400,000	

WEBFRONT-KS (Software WAAP, Performance License)

WEBFRONT	KS100	KS500	KS1000	KS2000	KS6000
Throughput	100 Mbps	500 Mbps	1 Gbps	2 Gbps	6 Gbps

* Up to KS2000 is provided in public cloud, and KS6000 is only provided in private cloud environment.

Min. requirements for WEBFRONT-KS

CPU Core	2	4	8	16	16
Memory	4 GB	8 GB	16 GB	32 GB	32 GB
HDD	40 GB				
Hypervisor	QEMU/KVM, VMware, OpenStack, Xen				

Key functions

	Whitelist and blacklist	SQL injection
	 Requested user definition filter 	 Logical operation SQL injection
	 Access control 	 Cross site scripting (XSS)
	 URL regular expression 	 Include injection
	 Request URL cloaking 	 Personal information inflow
Request check	Check evasion	Download check
	Buffer overflow	 Blocking banned words
	Shellcode	Upload check
	 Request form check 	Smuggling
	 Cookie protection 	 Web application DoS
	 Web attack program 	Excessive request control
	Responded user definition filter	Response type
	 Error code cloaking 	 Personal information leakage (outflow)
Response check	 Response URL cloaking 	Directory listing
	 Server data cloaking 	 Credential stuffing
	Code cloaking	 Web falsification prevention
L an and an a	Access control learning	
Learning	 Form field learning 	URL structure learning
	URL encoding	
Cloaking	Improper error handling	Server data spy
	• CAPTCHA	
Response		 User definition page [by attack/ by application/ user definition]
	 JavaScript authentication 	

Additional functions

Traffic load balancing	 Traffic load balancing on the multiple web servers that operate the same web applications Reducing investment costs with no need of separate load balancer (ADC, L4/L7 Switch) installation
Caching	 Storing the content often requested by users instead of a server by designating it As responding on behalf of a server, reducing traffic directly sent to the server and able to provide services faster
Compression	 Sending important content files including images to users after compressing them
QoS	 Setting the threshold for usage-request traffic bandwidth to prevent excessive traffic towards a server Blocking DDoS, protecting servers and maintaining the effective networks

PIOLINK is specialized in network and security. We ensure the industry's best application availability and performance and own unrivaled technologies and leadership in this intelligent, advanced IT environment by offering the build-up of Cloud infrastructure, the easy management of networks and data protection. Our flagship products are Application Delivery Controller (ADC) having Korea's No.1 market share, Web Application Firewall (WAF/WAAP), Cloud Managed Networking and Hyper Converged Infrastructure and services Managed Security Service (MSS or MSSProvider) and Security Consulting.

www.PIOLINK.com

• The content of this document is subject to change to improve on the performance and functions of a product, correcting print errors, et

• The image described here can be different from that of a real product.

• The name of a company, a product and a service specified here is the trademark or service label of the company.

• A product can be purchased from official partners and checked with the company's Sales Department or on its Website